Selected Publications

BYU Authors: D. D. Allred, published in J. Vac. Sci. Technol. A
The crystalline quality of Zn x Cd1−x Te single crystals prepared by a modified Bridgman method with 0≤x≤0.05 has been analyzed using photoluminescence. The spectrum of a typical sample is dominated by lines originating from the recombination of free and bound excitons. Lines due to free excitons in their ground and first excited states are observed in both the pure CdTe and the mixed crystals. Excitons bound to Cd vacancies are observed in the pure CdTe crystal but not in the mixed crystal. Weaker and broader features appearing at energies below the exciton emission range were associated with transitions involving free‐to‐bound and bound‐to‐bound levels. The origin of the various lines in the spectra was deduced from the detailed measurements of the dependence of the spectrum on temperature and excitation intensity.
BYU Authors: D. D. Allred, published in J. Vac. Sci. Technol. A
Large grain polycrystalline and single crystals of Zn x Cd1−x Te grown by a modified Bridgman method were studied using the photoluminescence and photoconductivity techniques. The temperature dependence of the band gap, as determined by photoluminescence, follows the Varshni equation for measuring temperature in the range of 15–290 K. One of the fitted parameters, the Debye temperature, monotonically decreases with the increase of the atomic zinc concentrations. A a close correlation between the photoluminescence and photoconductivitymeasurements is also found. Samples in which the photoluminescence spectra exhibit emission bands associated to cadmium vacancies and other structural defects, show a photoresponse curve which includes, in addition to the intrinsic band, another broad band at lower energies. Using the ionization energies of the defect related bands in the photoluminescence spectra we have identified the second band in the photoresponse curve due to the photoexcitation of trapped carriers at levels related with the structural defects.
BYU Authors: J. K. Shurtleff, D. D. Allred, R. T. Perkins, and J. M. Thorne, published in Materials Research Society
Thin film deposition techniques currently being used to produce multilayer x-ray optics (MXOs) have difficulty producing smooth, uniform multilayers with d-spacings less than about twelve angstroms. We are investigating atomic layer epitaxy (ALE) as an alternative to these techniques. ALE is a chemical vapor deposition technique which deposits an atomic layer of material during each cycle of the deposition process. The thickness of a film deposited by ALE depends only on the number of cycles. Multilayers deposited by ALE should be smooth and uniform with precise d-spacings which makes ALE an excellent technique for producing multilayer x-ray optics. We have designed and built an ALE system and we have used this system to deposit ZnSe using diethyl zinc and hydrogen selenide.
BYU Authors: D. D. Allred, published in Materials Research Society
The main lines in the photoluminescence spectra of Zn1Cd1−xTe single crystals grown by a modified Bridgman method in the compositional range of 0 ≤ X ≤ 0.25 have been identified. All crystals show only near-band-edge emission. To assist in the identification, various samples with different compositions were annealed under a Cd atmosphere. In the pure crystals, the prominent (A°,X) bound exciton line, as well as the doublet at longer wavelengths, disappear after the annealing. In contrast, the treatments do not change significantly the PL spectra of the mixed crystals.
BYU Authors: David D. Allred and Qi Wang, published in Materials Research Society
Laser Raman spectroscopy has been found to be useful for characterizing amorphous semiconductor multilayers, especially the interfaces of multilayers. Recently, we have extended this technique to the characterization of magnetron sputtered multilayers commonly used as reflectors in soft x-ray optics. Unlike the multilayers previously studied which contained only semiconductors and dielectrics, these are generally semiconductor/metal multilayers. We report here on the Raman characterization of the most common class of multilayers used in soft x-ray optics, those that contain a high density metal like tungsten interspersed with layers of carbon. In all of the metal/carbon multilayers the dominate feature in the Raman spectra is due to a-C. The a-C spectra consists of a broad peak at about 1560 cm-1 (G-peak) and a shoulder at about 1400 cm-1 (D-peak). This can be deconvoluted with Gaussian line shapes to yield two peaks (one at about 1560 to 1570 cm-1 and the other at about 1380 to 1420 cm-1). Among the W/C multilayer samples peak positions and relative magnitudes changed little with carbon thickness over the range of 1 to 12 nm. Significant differences are, however, seen as the identity of the metal component is altered or, especially, as the preparations are varied. For example, the intensity ratio of the D-peak to G-peak was much larger for multilayer samples prepared under conditions of good plasma confinement.
BYU Authors: Raymond T. Perkins, David D. Allred, Larry V. Knight, and James M. Thorne, published in Proc. SPIE
Methods of designing strong, high transmission soft x-ray windows are discussed. A material which contains several elements, most notably 0, N, and C, produce the most spectrally neutral window. It is noted that a predominantly single element material such as diamond is in reality an edge filter. A structure to support very thin films and to provide exceptional mechanical strength is discussed. Pressure cycling data for such a supported window are presented.