Selected Publications

Thumbnail of figure from publication
By Taylor J. Buckway, Aaron Redd, Devin Lewis, Joshua Vawdrey, Karine Chesnel, David Allred, and Richard L. Sandberg (et al.)
Abstract:

Tabletop extreme ultraviolet (EUV) sources based on high harmonic generation (HHG) have been used as a powerful tool for probing magnetism. Obtaining magnetic information via magneto-optical contrast often requires the energy of the light to be tuned to magnetic resonance energies of the magnetic element present in the material; therefore, it is essential to calibrate the HHG spectrum to well defined absorption energies of materials. We have designed and assembled a HHG based EUV source for studying transition metal magnetic materials at their resonant M-absorption edges (35-75 eV of photon energy). One material of interest is iron, for which the iron M2,3 edge is 52.7 eV (23.5 nm wavelength) according to CXRO. We prepared and characterized a thin sample of iron for absorption spectroscopy and calibration of the absorption edge with beamline 6.3.2 at the Advance Light Source (ALS) in Lawrence Berkeley National Laboratory. This well characterized sample was capped with gold to prevent oxidation. From these measurements we extracted the absorption part of the index of refraction β spectrally and confirmed that the absorption edge of iron is 52.7 eV. With this information, we can better calibrate the HHG spectrum of our tabletop EUV source. Calibration of the HHG spectrum was achieved using model fitting the HHG spectrum using the grating equation and law of cosines while taking account into the results of the ALS data. We have determined that driving wavelength of the HHG process to be 773 nm. We also conclude that the chirp of the driving laser pulse can cause an energy shift to a HHG spectrum.

Thumbnail of figure from publication
By Taylor J. Buckway, Aaron Redd, Devin Lewis, Joshua Vawdrey, Karine Chesnel, David Allred, and Richard L. Sandberg (et al.)
Abstract:

Tabletop extreme ultraviolet (EUV) sources based on high harmonic generation (HHG) have been used as a powerful tool for probing magnetism. Obtaining magnetic information via magneto-optical contrast often requires the energy of the light to be tuned to magnetic resonance energies of the magnetic element present in the material; therefore, it is essential to calibrate the HHG spectrum to well defined absorption energies of materials. We have designed and assembled a HHG based EUV source for studying transition metal magnetic materials at their resonant M-absorption edges (35-75 eV of photon energy). One material of interest is iron, for which the iron M2,3 edge is 52.7 eV (23.5 nm wavelength) according to CXRO. We prepared and characterized a thin sample of iron for absorption spectroscopy and calibration of the absorption edge with beamline 6.3.2 at the Advance Light Source (ALS) in Lawrence Berkeley National Laboratory. This well characterized sample was capped with gold to prevent oxidation. From these measurements we extracted the absorption part of the index of refraction β spectrally and confirmed that the absorption edge of iron is 52.7 eV. With this information, we can better calibrate the HHG spectrum of our tabletop EUV source. Calibration of the HHG spectrum was achieved using model fitting the HHG spectrum using the grating equation and law of cosines while taking account into the results of the ALS data. We have determined that driving wavelength of the HHG process to be 773 nm. We also conclude that the chirp of the driving laser pulse can cause an energy shift to a HHG spectrum.

Thumbnail of figure from publication
By Joshua J. Vawdrey and David D. Allred (et al.)
Abstract:

First Contact (FC) Polymer™, developed by Photonic Cleaning Technologies, is used to clean and protect surfaces from contamination. The polymer creates a peelable coating that renders the surface clean while not leaving visible residues. To investigate the effectiveness of FC at the subnanometer level, we used variable-angle, spectroscopic ellipsometry (VASE) to measure sample top-layer thickness after repeated application/storage/removal cycles of standard (red) FC with three sample sets (CVD Si3N4 on Si, bare Si, and SiO2 on Si). The samples were measured via VASE after every FC removal to understand contaminant thickness changes with “peel-off” count. Control samples were also measured at each iteration. Ellipsometric analysis revealed FC removed, during the first peel-off, impurity from the surface of samples treated with impure isopropyl alcohol. Linear regressions and t-tests comparing samples with and without FC were employed for evaluating changes with peel-off counts. There is evidence for the very slight build-up of material which is not removed by iterative FC application/removal cycles on these samples. It is slight, <0.1 nm after 17 iterations, in the case of native oxide on Si.

Thumbnail of figure from publication
By Aaron J. Thorum, David D. Allred, William G. Pitt, and Troy R. Munro
Abstract:

One class of neutron detectors for illicit nuclear materials are capture-gated detectors, which use organic scintillators to slow neutrons while emitting fluorescent light and elements that have high neutron capture cross-sections to provide a second signal. Homogeneous detectors composed of neutron capturing metallo-organics within plastic darken due to their chemical instability, while heterogeneous detectors frequently result in non-transparent material due to a mismatch of the refractive index. These detectors are often polymerized through bulk polymerization, but there is little data available on this process applied to mixtures of polystyrene (PS) and polyvinyl toluene (PVT), two commonly used polymers in plastic scintillators. This work presents bulk polymerization processing toward an index-matched, heterogeneous capture-gated neutron detector based on PS and PVT copolymers with a range of refractive indices. Specifically 1:3, 1:1, and 3:1 PS:PVT ratios were manufactured and their refractive indices, measured by refractometry, were compared to a theoretical model based on a mixture of the refractive indices of pure PS and PVT. Finally, a composite of PS/PVT and an Ohara S-BAL42 glass was developed to confirm the index-matching capability of the process as a step toward developing a heterogenous, capture-gated neutron detector with high light transmission efficiencies allowed by index-matched materials.

Thumbnail of figure from publication
Abstract:

Hollow cathode plasmas are common extreme ultraviolet (EUV) lamps used for material characterization. However, the relatively high pressure of the plasma can affect downstream instruments, as well as absorb the EUV. EUV windows are difficult to fabricate due to EUV’s strong interaction with all materials. We present a carbon nanotube (CNT) microfabricated window composed of multiple high aspect-ratio columns in parallel. The open areas allow wide bandpass transmission, while the walls restrict gas flow. We model the CNT window transmission as a weight function on the light from of a Mcpherson 629-like hollow cathode helium plasma in visible wavelengths. We model the CNT window differential pumping as a series of columns between two chambers of different pressures.

Thumbnail of figure from publication
By Kenan Fronk and David D. Allred
Abstract:

Four evaporated, thin-film Al samples protected by a thin (29±2 nm) aluminum fluoride (AlF3) overcoat stored in dry (dew point 276K ), 327 K air over a period of 2500 hours exhibited no significant changes in the thickness of the protective AlF3 layer nor growth in aluminum oxide as observed by variable-angled, spectroscopic ellipsometry. Two of the samples had AlF3 evaporated at T>200°C, two without substrate heating. No difference in aging was noted amongst the samples. Since many months may elapse between fabrication and launch of the completed observatory, this result contributes to understanding the boundaries in temperature and humidity separating negligible changes in fluoride-containing optical components from unacceptable degradation. While negligible changes in thicknesses were observed, there were changes in the ellipsometric data, psi and delta, with time. In this study, we also present our use of an effective medium approximation model in understanding changes in the fluoride layer with aging. The observed changes in SE parameters are here interpreted as changes in void fraction, though the presence of some water was not ruled out. Apparent void fraction fell by a factor of two by the end of the 2500 hours. The decreasing void fraction suggests that the films might be becoming more compact with time. Other surface sensitive techniques such as AFM are needed to narrow down possible explanations for observed changes.